If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-365=0
a = 1; b = 0; c = -365;
Δ = b2-4ac
Δ = 02-4·1·(-365)
Δ = 1460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1460}=\sqrt{4*365}=\sqrt{4}*\sqrt{365}=2\sqrt{365}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{365}}{2*1}=\frac{0-2\sqrt{365}}{2} =-\frac{2\sqrt{365}}{2} =-\sqrt{365} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{365}}{2*1}=\frac{0+2\sqrt{365}}{2} =\frac{2\sqrt{365}}{2} =\sqrt{365} $
| -10-p=8+8p | | 4q=4q+5 | | W-w=0 | | 4x-80=2x | | 25x^2-192x+123=0 | | 2p-6=2p | | x/15+1/3=30 | | (2x-3)^2-14=2x(x-7) | | 25y^2-144y+192=0 | | 1-6a=14+8-7a-6a | | (2x-3)^-14=2x(x-7) | | 155=-u+72 | | 36-12=4(x-1) | | 6z-4÷2=-11 | | 1/3x–9=4/9x | | -0.10(33)+0.65x=0.05(x-18) | | 3n+9+12=20 | | 2023=0.638x^2+6.671x+627.619 | | 8-9x+9+5x+5x-3=5+3x5 | | -x=3x^2+3x+6 | | F(-x)=3x^2+3x+6 | | 5x+1+5x=150 | | 0.5a+3/2=3 | | 6+3n=6n+9 | | 28+y^2-16y=0 | | 11/4+3/4r=163/36 | | -2c+11=-8c-7 | | -2c+11=-8c–7 | | 1/2x+2/8x=3x-1 | | X+2/3=5=x/2 | | 21=3+35t-16^2 | | w+3w-2w=5w+1 |